Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid.

نویسندگان

  • Bing Wang
  • Xiaoyan Zhou
  • Dongqi Wang
  • Jun-Jie Yin
  • Hanqing Chen
  • Xingfa Gao
  • Jing Zhang
  • Kurash Ibrahim
  • Zhifang Chai
  • Weiyue Feng
  • Yuliang Zhao
چکیده

Preparation of heterogeneous catalysts with active ferrous centers is of great significance for industrial and environmental catalytic processes. Nanostructured carbon materials (NCM), which possess free-flowing π electrons, can coordinate with transition metals, provide a confinement environment for catalysis, and act as potential supports or ligands to construct analogous complexes. However, designing such catalysts using NCM is still seldom studied to date. Herein, we synthesized a sandwich structured ternary complex via the coordination of Fe-loaded humic acid (HA) with C=C bonds in the aromatic rings of carbon nanotubes (CNTs), in which the O/N-Fe-C interface configuration provides the confinement environment for the ferrous sites. The experimental and theoretical results revealed octahedrally/tetrahedrally coordinated geometry at Fe centers, and the strong hybridization between CNT C π* and Fe 3d orbitals induces discretization of the atomic charges on aromatic rings of CNTs, which facilitates O2 adsorption and electron transfer from carbon to O2, which enhances O2 activation. The O2 activation by the novel HA/Fe-CNT complex can be applied in the oxidative degradation of phenol red (PR) and bisphenol A (BPA) in aqueous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of Humic Acid On Multi-Walled Carbon Nanotubes

Background: Natural organic matters (NOMs) have the main role in formation of trihalomethanes. These compounds are in natural water sources due to biological activities. In the presented study, adsorption and separation of humic acid as an index of natural organic matters using multi-walled carbon nanotubes is evaluated. Methods: The experiments were carried out in bath adsorption reactors wit...

متن کامل

بررسی کارایی نانوتیوب‌های کربنی چند‌جداره در جذب اسید هیومیک در شرایط اسیدی از محلول‌های آبی

  Background : The presence of humic acid in water resources is the most health problems of many communities. In recent years, various methods have been focused on for decreasing or removing humic acid that is in water resources and is one of the Trihalomethanes (THMs) precursors. The aim of this study is investigation the use of Multi-Walled Carbon Nanotubes (MWCNTs) as adsorbent at humic acid...

متن کامل

بررسی عملکرد فرایند ازن زنی کاتالیزوری با کربن فعال درحذف اسید هیومیک از محلول های آبی

Introduction & Objective: In recent years, the use of alternative disinfectants and the control of natural organic matters are two approaches that are typically applied in water treatment utilities to reduce the formation of chlorinated disinfection by-products. Catalytic ozonation is a new technology used to promote the efficiency of ozonation. The goal of this study was to survey the feasib...

متن کامل

Catalytic Effects of Carbon Nanotubes on Complexation of Some Amino Acids via Cobalt Cation Catalyst

In this research, investigation of the adsorption isotherms and the effect of solution conditions such as pH and concentration of complexation of some amino acids with cobalt(II) nitrate six-hydrate upon multi-wall type carbon nanotube (CNT) were done. The adsorption capacity of complexation of amino acids onto the surface of carbon nanotube increased with the pH from acidic to alkaline. At pH ...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2015